Oxford Cambridge and RSA

GCE

Physics A

Unit G482: Electrons, Waves and Photons
Advanced Subsidiary GCE

Mark Scheme for June 2015

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

Annotations

Available in Scoris

Annotation	Meaning
BOD	Benefit of doubt given
CON	Contradiction
$*$	Incorrect response
ECF	Error carried forward
FT	Follow through
NAQ	Not answered question
NBOD	Benefit of doubt not given
POT	Power of 10 error
\wedge	Omission mark
RE	Rounding error or repeat error
SF	Error in number of significant figures
-	Correct response
AE	Arithmetic error
$?$	Wrong physics or equation

The abbreviations, annotations and conventions used in the detailed Mark Scheme are:

Annotation	Meaning
$/$	Alternative and acceptable answers for the same marking point
(1)	Separates marking points
reject	Answers which are not worthy of credit
not	Answers which are not worthy of credit
IGNORE	Statements which are irrelevant
ALLOW	Answers that can be accepted
()	Words which are not essential to gain credit
-	Underlined words must be present in answer to score a mark
ecf	Error carried forward
AW	Alternative wording
ORA	Or reverse argument

Subject-specific Marking Instructions

CATEGORISATION OF MARKS

The marking scheme categorises marks on the MABC scheme
B marks: These are awarded as independent marks, which do not depend on other marks. For a B-mark to be scored, the point to which it refers must be seen specifically in the candidate's answer.

M marks: \quad These are method marks upon which A-marks (accuracy marks) later depend. For an M-mark to be scored, the point to which it refers must be seen in the candidate's answer. If a candidate fails to score a particular M-mark, then none of the dependent Amarks can be scored.

C marks:

A marks:

These are compensatory method marks which can be scored even if the points to which they refer are not written down by the candidate, providing subsequent working gives evidence that they must have known it. For example, if an equation carries a Cmark and the candidate does not write down the actual equation but does correct working which shows that the candidate knew the equation, then the \mathbf{C}-mark is given. These are accuracy or answer marks, which either depend on an M-mark, or allow a C-mark to be scored.

Note about significant figures:

If the data given in a question is to 2 SF , then allow answers to 2 or more SF.
If an answer is given to fewer than 2 SF , then penalise once only in the entire paper. N.B. Also penalise RE only once per paper.
Any exception to this rule will be mentioned in the Guidance.
A tick should be placed in the body of the script at the point where each mark is awarded.

Question			Answer	M	Guidance
	a	i	$\begin{aligned} & \mathrm{P}=\mathrm{V}^{2} / \mathrm{R}=230^{2} / \mathrm{R}=1500 \\ & \mathrm{R}=35.3 \Omega \end{aligned}$	$\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{~A} 1 \end{aligned}$	accept I $=\mathrm{P} / \mathrm{V}=6.52 \mathrm{~A}$ and $\mathrm{R}=230 / 6.52$ allow $52900 / 1500=35 \Omega$, i.e. some working shown
		ii	$\begin{aligned} & \text { use of } \rho=R A / I \text { or } R=\rho I / A \\ & I=35 \times 7.8 \times 10^{-8} / 1.1 \times 10^{-6} \\ & I=2.5(\mathrm{~m}) \end{aligned}$	$\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{C} 1 \\ & \mathrm{~A} 1 \\ & \hline \end{aligned}$	formula correct substitution answer (2.48)
	b		resistors and motor wired in parallel to supply switches correctly placed (open or closed) any suitably labelled symbols; components in correct order	$\begin{aligned} & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	do not expect switches to be labelled
	c	i	power is inversely proportional resistance (for same V) resistance of wire is inversely proportional to c-s area/diameter squared (as I and ρ are fixed/same)	B1 B1	accept: (same V so for) larger/smaller power need (larger/smaller I and so) smaller/larger resistance accept smaller c-s area/diameter (of wire) causes larger resistance or vice versa
		ii	$\begin{array}{ll} \text { P } \alpha A & \text { (because } \left.P=V^{2} / R=V^{2} \mathrm{~A} / \rho \mathrm{l}\right) \\ \text { or } \mathrm{P} \alpha \mathrm{~d}^{2} & \left(\text { because } \mathrm{A}=\pi \mathrm{d}^{2} / 4\right) \\ 1.0 / 1.5=(\mathrm{d} / \mathrm{D})^{2}=2 / 3 \\ \text { so } d=0.82 \mathrm{D} & \\ \hline \end{array}$	B1 M1 A1	accept $\mathrm{R}_{1000}=52.9 \Omega$ and $\mathrm{R} \alpha 1 / \mathrm{A}$ [where $A_{d}=5.2 \times 10^{-8} \& A_{D}=7.8 \times 10^{-8}$] so $35.3 / 52.9=\left[(d / D)^{2}\right.$ or $\left.A_{d} / A_{D}\right]=2 / 3$ $\left[\right.$ where $\mathrm{d}=2.57 \times 10^{-4} \& \mathrm{D}=3.15 \times 10^{-4}$]

Question		Answer	M	Guidance
d		total current in circuit $=2600 / 230=11.3 \mathrm{~A}$ so 13 A fuse required	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	accept I $=2500 / 230=10.9 \mathrm{~A}$
e	i	(a unit of) energy equal to 3.6 MJ or 1 kW for $1 \mathrm{~h} / \mathrm{AW}$	B1	e.g. 1000 W for 3600 s or similar; NOT 1 kW per hour
	ii	$\begin{aligned} & 1.6 \times 4 \times 18 \\ & 115(\mathrm{p}) \end{aligned}$	$\begin{aligned} & \hline \text { C1 } \\ & \text { A1 } \end{aligned}$	allow 1 mark for 108 p; i.e. using $1.5 \times 4 \times 18$ or 1 mark for 79 p ; i.e. using $1.1 \times 4 \times 18$ NOT 72 p
		Total question 1	18	

Question			Answer	M	Guidance
2					
	a		for R_{1} for R_{2}	B1 B1	
	b	i	500Ω	B1	accept $\pm 20 \Omega$
		ii	7.0 = I x 500; I 0.014 (A)	B1	ecf b(i)
		iii	$\begin{aligned} & \begin{array}{l} 5.0=0.014 \times R \quad \text { or } \\ R=360 \Omega \end{array} \quad 12=0.014(500+\mathrm{R}) \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{M} 1 \\ & \text { A1 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { ecf b(i)(ii) } \\ & \text { allow } R=500 \times 5 / 7=360 \Omega \end{aligned}$
		iv	$\begin{aligned} & \text { (at } \left.200^{\circ} \mathrm{C}\right) \mathrm{R}_{\text {th }}=250 \Omega \\ & \mathrm{~V} \text { across thermistor }=12 \times 250 /(250+350)=5.0 \mathrm{~V} \\ & \text { alt } 5.0=12 \times \mathrm{R} /(\mathrm{R}+350) \\ & \text { or } I=7.0 / 350=0.02 \mathrm{~A} ; \mathrm{V}_{\text {th }}=5.0=0.02 \times \mathrm{R} \\ & \mathrm{R}=250 \Omega \text { which occurs at } 200^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{~B} 1 \end{aligned}$	allow $\mathrm{R}_{\mathrm{th}}=250 \pm 10$ giving 4.8 to 5.1 V expect 350 or 360 ; allow 1 SF where answer is 5.0 NOT $250 \times 0.02=5.0 \mathrm{~V}$; 0.02 A must be justified allow $7.0=12 \times 350 /(350+\mathrm{R})$
	C		switch on $5.0=12 \times 250 /(250+R)$ or $7.0=12 \times R /(250+R)$ giving $R=350 \Omega$ which is $190^{\circ} \mathrm{C}$ switch off $7.0=12 \times 250 /(250+R)$ or $5.0=12 \times R /(250+R)$ giving $R=180 \Omega$ which is $210^{\circ} \mathrm{C}$ or Switch on, R2 / R1 = 7/5 giving R2-250 x 7/5 = 350 ohm Switch off, R2 / R1 = 5/7 giving R2 $=250 \times 5 / 7=179 \mathrm{ohm}$	$\begin{aligned} & \mathrm{M} 1 \\ & \mathrm{~A} 1 \\ & \mathrm{M} 1 \\ & \mathrm{~A} 1 \end{aligned}$	accept solution in 2 stages first calculating currents on $I=0.02$ and $R=7 / 0.02$ off $\mathrm{I}=0.028$ and $\mathrm{R}=5 / 0.028$ allow $\pm 5^{\circ} \mathrm{C}$ in reading from graph N.B. zero marks for correct temperatures quoted without some correct working/justification
			Total question 2	12	

\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|r|}{Question} \& Answer \& M \& Guidance \\
\hline 5 \& \& \& \& \& \\
\hline \& a \& i \& when two (or more) waves meet/superpose/overlap (at a point) there is a change in overall displacement \& \[
\begin{aligned}
\& \text { M1 } \\
\& \text { A1 }
\end{aligned}
\] \& \begin{tabular}{l}
NOT interact,combine, join, connect, collide, hit, intersect, pass through, etc. \\
allow the resultant displacement equals the sum of the individual displacements
\end{tabular} \\
\hline \& \& ii \& constant phase difference/relationship (between the waves) \& B1 \& allow fixed not same \\
\hline \& b \& \& \[
\begin{aligned}
\& \lambda=c / f=3.0 \times 10^{8} / 1.0 \times 10^{10} \\
\& \lambda=3.0 \times 10^{-2} \text { so aerial length }=1.5 \times 10^{-2}(\mathrm{~m})
\end{aligned}
\] \& \[
\begin{aligned}
\& \mathrm{M} 1 \\
\& \mathrm{~A} 1 \\
\& \hline
\end{aligned}
\] \& accept \(1.5 \mathrm{c}(\mathrm{m})\) \\
\hline \& C \& 11

2 \& \begin{tabular}{l}
the path difference between the signals (from the two transmitters) changes (along OP)

causing the detected signal to vary between maximum and minimum values/AW

or when signals (at the point on OP) are in phase there is a maximum

when (π) out of phase there is a minimum
$$
x=\lambda D / a=3.0 \times 10^{-2} \times 4.0 / 0.20(=0.60)
$$

so distance $=x / 2=0.30(\mathrm{~m})$

 \&

B1 B1

C1 A1

 \&

give 1 mark out of 2 for maxima and minima occur (because of interference)

ecf (b) 20 times answer to (b)

allow 1 SF answer here
\end{tabular}

\hline \& \& ii \& amplitude of signal decreases (inversely) with distance because energy emitted by the transmitters spreads out (so less is collected by the receiver the further away it is) \& B1
B1 \& allow intensity; no mark if any suspicion of decrease being caused by interference effect accept any statement which conveys the idea of energy spreading correctly,e.g. I $\alpha 1 / d^{2}$

\hline \& \& iii \& when $\mathrm{AO}-\mathrm{BO}=\lambda / 2$ a minimum occurs/AW or phase difference of $\pi\left(180^{\circ}\right)$ between detected signals from A and B so distance $=\lambda / 2=1.5 \times 10^{-2}(\mathrm{~m})$ \& \[
$$
\begin{aligned}
& \text { B1 } \\
& \text { B1 } \\
& \hline
\end{aligned}
$$

\] \& | idea that movement of $\lambda / 2$ will change maximum to minimum or vice versa |
| :--- |
| ecf (b) same answer as (b); accept 1.5 c(m) |

\hline \& d \& i \& intensity increases by factor of 4 as intensity a (amplitude) ${ }^{2}$ \& $$
\begin{aligned}
& \mathrm{B} 1 \\
& \text { B1 }
\end{aligned}
$$ \&

\hline \& \& ii \& intensity falls to zero (emitted) signal is (vertically) polarised receiver in position only to detect horizontally polarised signal \& $$
\begin{aligned}
& \text { B1 } \\
& \text { B1 } \\
& \text { B1 }
\end{aligned}
$$ \& allow transmitter and detector act like 'crossed polarisers' or quoting Malus' law correctly

\hline \& \& \& Total question 5 \& 18 \&

\hline
\end{tabular}

Question			Answer	M	Guidance
6					
	a		photoelectric effect	B1	
	b		1.Individual photons are absorbed by individual electrons (in the metal surface)/ one to one interaction/AW 2.Only photon with energy above the work function energy will cause photoelectron emission/idea of threshold frequency 3.Photon energy is proportional to frequency 4. (therefore) blue photons with higher $f /$ shorter λ will cause photoemission but red photons will not. 5.hf $-\phi=\mathrm{KE}_{\text {max }}$ is the equation resulting from conservation of energy or resulting from the meaning of each term 6.A wave model does not explain instantaneous emission	B1 B1 B1 B1 B1 B1	max 4 from 6 marking points allow work function (of a metal surface) is minimum energy for photoemission allow shorter wavelength light has higher energy (hc/ λ) or higher frequency higher energy (hf) orred photons with lower f/longer Λ..... max must be present to score mark; equation stated in words: photon e. - w.f. = max ke of e to score full marks (4) the answer must include two terms out of photon, work function and threshold frequency/wavelength (QWC mark)
-	C	i	$\begin{aligned} & \text { work function }=\phi=\mathrm{hc} / \lambda \\ & \varphi=6.6 \times 10^{-34} \times 3.0 \times 10^{8} / 4.8 \times 10^{-7} \\ & =4.1(4) \times 10^{-19}(\mathrm{~J}) \end{aligned}$	$\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{M} 1 \\ & \mathrm{~A} 1 \end{aligned}$	allow $\phi=h f\left(f=6.25 \times 10^{14}\right)$ and $\mathrm{f}=\mathrm{c} / \lambda$ must show answer initially to 2 or 3 SF ; ignore any final rounding down to 1 SF
		ii	$\begin{aligned} & \mathrm{E}-\phi=1 / 2 \mathrm{mv}^{2} \\ & (5.2-4.1) \times 10^{-19}=1.1 \times 10^{-19}=1 / 2 \mathrm{mv}^{2} \\ & \mathrm{v}=\sqrt{ }\left(2 \times 1.1 \times 10^{-19} / 9.1 \times 10^{-31}\right) \\ & \mathrm{v}=4.9 \times 10^{5}\left(\mathrm{~m} \mathrm{~s}^{-1}\right) \end{aligned}$	$\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{C} 1 \\ & \mathrm{~A} 1 \end{aligned}$	can use 4.14 or 4 instead of 4.1 allow $5.1 \times 10^{5}\left(\mathrm{~m} \mathrm{~s}^{-1}\right)$ using $\phi=4 \times 10^{-19}$ or $4.8 \times 10^{5}\left(\mathrm{~m} \mathrm{~s}^{-1}\right)$ using $\phi=4.14 \times 10^{-19}$
	d	i	electrons passing through a thin sheet of graphite are diffracted/produce diffraction rings on a fluorescent screen	$\begin{aligned} & \hline \text { M1 } \\ & \text { A1 } \end{aligned}$	any suitable/reasonably plausible situation what is observed/ interpretation
		ii	$\begin{aligned} & \lambda=\mathrm{h} / \mathrm{mv} \\ & \lambda=6.63 \times 10^{-34} / 5.0 \times 10^{5} \times 9.1 \times 10^{-31} \\ & \lambda=1.5 \times 10^{-9}(\mathrm{~m}) \end{aligned}$	C1 C1 A1	1.46 to 3 SF
			Total question 6	16	

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU
OCR Customer Contact Centre
Education and Learning
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations
is a Company Limited by Guarantee
Registered in England
Registered Office; 1 Hills Road, Cambridge, CB1 2EU

Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

